
BUSSTEPP Homework 1:

A Tutorial on Numerical Methods with Quantum Mechanics

August 29, 2003

Abstract
In numerical lattice QCD, one evaluates the path integral with a Monte Carlo method.

This tutorial introduces novices to the techniques using quantum mechanics for illustration.
The examples used are (i) the harmonic oscillator, (ii) an anharmonic oscillator with V (x) =
1
2mω

2x2 + 1
4λx

4, and a “double hump” with V (x) = − 1
2mω

2x2 + 1
4λx

4.
Part of the homework is to write a computer program. Students with little programming

experience may team up with those who do. You don’t need more knowledge than compiling
and running a simple program, and a random number generator, which you can take from a
standard library.

1 Review of Path Integrals

Let us recall Feynman’s derivation of the path integral formulation of quantum mechanics. This
is in many textbooks, so we shall be sketchy here. We shall set ~ = 1 and c = 1, so that p, m,
ω, E, 1/t, and 1/x, have the same dimension (as usual in particle physics).

The Hamiltonian is

H =
p2

2m
+ V (x). (1)

We would like to derive an expression for the propagator, i.e., the amplitude that the particle
propagates from x = x0 at t = 0 to x = xT at t = T . We have

〈x(T)|x(0)〉 = 〈xT |eiĤT |x0〉 =
∑

n

〈xT |n〉eiEnT 〈n|x0〉 =
∑

n

ψ∗n(xT)ψn(x0)eiEnT , (2)

where the n labels the eigenstates of Ĥ with eigenvalue En and wave functions ψn(x). The last
two expressions remind us that a lot of information is encoded in the propagator.

Divide the total time interval into N small intervals, for convenience of equal size T/N = δ.
At the end of each interval, insert

1 =
∫
dxi|xi〉〈xi|, i = 1, . . . , N − 1. (3)

1

Then

〈xT |e−iĤT |x0〉 =
∫ N−1∏

i=1

dxi

N−1∏
i=0

〈xi+1|e−iĤδ|xi〉, (4)

where xN = xT . Note that there are N − 1 integrations and N matrix elements.
Now approximate

〈xi+1|e−iĤδ|xi〉 ≈ 〈xi+1|e−iV̂ (x)δ/2e−ip̂2δ/2me−iV̂ (x)δ/2|xi〉, (5)

and re-write the right-hand side

〈xi+1|e−iV̂ (x)δ/2e−ip̂2δ/2me−iV̂ (x)δ/2|xi〉 = e−iV (xi+1)δ/2〈xi+1|e−ip̂2δ/2m|xi〉e−iV (xi)δ/2. (6)

Exercise I.1: Show that

〈xi+1|e−p̂2a/2m|xi〉 =
√

m

2πa
e−m(xi+1−xi)

2/2a. (7)

Note that here the time interval is imaginary: δ = −ia, with a real. Why?

Combining Eq. 7 with Eqs. (4) and (6), one has (for imaginary time, T → −iT)

〈xT |e−ĤT |x0〉 = lim
N→∞

∫
Dx exp

(
a

N−1∑
i=0

Li

)
, Dx =

N−1∏
i=1

dxi

√
m

2πa
, (8)

where the limit is taken with T fixed, a = T/N . The (discrete time) Lagrangian is

Li = −1
2m

(
xi+1 − xi

a

)2

− 1
2V (xi+1)− 1

2V (xi), (9)

which one recognizes as a discrete approximation to the kinetic energy and the average of the
potential energy over two times.

Because of the sum over i in Eq. (8), we could have also defined Li with V (xi) alone, instead
of the average.

We usually set S = −a
∑

i Li and call S the Euclidean action. (In field theory, “imaginary
time” has metric (+,+,+,+).) For a sensible theory, S must be bounded below.

In this tutorial, we wish to evaluate path integrals such as the right-hand side of Eq. (8)
numerically. Therefore we maintain the imaginary-time formalism. Then the integrals die
off rapidly for large x. With real time, there would be wild oscillations, and (particularly in
field theory) drastic cancellations between adjacent patches of configuration space {xi : i =

2

0, N −1}. That is unfeasible numerically. As we shall see below, it is easy to get at most desired
information. (And in quantum mechanics, all desired information.)

You can obtain the ground-state energy and (squared) wave function as follows. Set x0 =
xT = x. Then

〈x|e−ĤT |x〉 =
∑

n

|〈x|n〉|2e−EnT ≈ |〈x|0〉|2e−E0T , (10)

the last for large T . Evaluating the right-hand side of Eq. (8) numerically as a function of T
and x, for E0a = E0T/N � 1, yields the desired information. For more details, consult Lepage,
“Lattice QCD for Novices.”

In field theory, the ground state is the “vacuum,” and we are usually more interested in
excited states, which correspond to (elementary or composite) particles. To this end it is con-
venient to set xT = x0 and integrate over x0 too.

Z =
∫
Dx exp (−S) , Dx =

N−1∏
i=0

dxi

√
m

2πa
, (11)

Z[J] =
∫
Dx exp

(
−S +

∑
i

Jixi

)
. (12)

A very useful object is the connected 2-point correlation function:

d2 lnZ[J]
dJjdJ0

=
1
Z

∫
Dxxjx0 e

−S − 1
Z

∫
Dxxj e

−S 1
Z

∫
Dxx0 e

−S . (13)

This can be generalized to n-point functions and also to correlation functions of f(xi) 7→ f(d/dJ).

Exercise I.2: Show that the integrals on the right-hand side can be expressed as matrix elements and
exponentials e−Ent, viz.

〈xj〉 :=
1
Z

∫
Dxxj e

−S large T→ 〈0|x̂|0〉 (14)

〈xjx0〉c :=
d2 lnZ[J]
dJjdJ0

large T→
∑
n 6=0

|〈0|x̂|n〉|2
[
e−(En−E0)ja + e−(En−E0)(T−ja)

]
(15)

= 〈xjx0〉 − 〈xj〉〈x0〉. (16)

The notation 〈Φ({xi})〉 for the path-integral average should not be confused with Dirac notation for
quantum mechanical matrix elements. Both are common usage.

The connected 2-point correlation functions are similar to time-ordered products. The first
series dominates when T � ja, the second when T � T − ja. Since we have periodic boundary
conditions in (imaginary) time, the time step T − ja comes before t = 0.

3

If T � ja� (E2 − E1)−1, then the first term dominates

d2 lnZ[J]
dJjdJ0

→ |〈0|x̂|1〉|2e−(E1−E0)ja. (17)

So from the connected 2-point function and a fit to the j dependence, one can obtain E1 − E0,
which in a field theory would be called the mass gap. If we can find a function f(x) so that
〈0|f(x̂)|1〉 = 0, then one can also find the mass gap of higher-lying states. This is often possible
by exploiting symmetries. There are also ways to devise 〈0|f(x̂)|1〉 ≈ 0.

2 Monte Carlo Integration

The imaginary time path integral consists of an ordinary N -dimensional integral, so it should
be possible to carry out the integration numerically. For quantum mechanics with modest N ,
general-purpose integration routines are enough. Here, however, we introduce a technique that
works for large N and, hence, also for field theory (which has a handful of integration variables
for each space-time point, of order N4).

The first ingredient is Monte Carlo integration. The idea is to choose a random configuration
of the xi, which we can denote {xi}(c), and we can generate C such configurations. Then

Z =
∫
Dx e−S = lim

C→∞

(m

2πa

)N/2
C−1∑
c=0

exp
[
−S

(
{xi}(c)

)]
, (18)

∫
Dx f({xi})e−S = lim

C→∞

(m

2πa

)N/2
C−1∑
c=0

f({xi}(c)) exp
[
−S

(
{xi}(c)

)]
. (19)

An estimate of the left-hand side is achieved for C finite.
This is hopelessly inefficient for large N , because S is an extensive quantity (S grows with

N). Therefore, configurations with large action make almost no contribution to the sums. They
are a waste of (computer) time.

The remedy is called importance sampling. Instead of choosing all configuration with equal
weight, choose them with weight e−S . This is possible because S is real and bounded below.
Then

1
Z

∫
Dx f({xi})e−S = lim

C→∞

1
C

C−1∑
c=0

f({xi}(c)). (20)

Again an estimate of the left-hand side is achieved for C finite.
A simple way to generate configurations is the Metropolis algorithm. A flow chart is given in

Fig. 1, customized to quantum mechanics with one degree of freedom. Here rand() is a random
number generator that returns a real number ξ ∈ [0, 1). In lattice gauge theory, the gauge

4

Start Metropolis

Propose new value for x
y = x + r*(2*rand() - 1);

S(y) > S(x)?

exp(S(x) - S(y)) < rand()?

YES

return x

YES

return yNO

return yNO

Figure 1: Flow chart of the Metropolis algorithm. For a more complicated set of degrees of
freedom, the only change is to customized the proposed update from y = x + r ∗ (2 ∗ rand()− 1)
to something appropriate to the space in which the degrees of freedom live. Here S(x) need only
be that part of the action that depends on the variable(s) being updated.

5

variables are not real numbers (they take values in a Lie group), so the proposed update has to
be customized accordingly.

The parameter r is chosen for efficiency, so that the new values (the branches on the right
in Fig. 1) are accepted around 50% (say, 40–60%) of the time. If r is too large, the proposed
updated action is usually large and usually rejected, so the new configuration rarely changes. If
r is too small, the new configuration is likely to be accepted, but it is hardly different from its
predecessor. To move through configuration space efficiently, one must avoid these extremes.

The disadvantage of the Metropolis algorithm is that it does not move through configuration
space very quickly. So the configurations used in Eq. (20) are not those from every update,
but rather after repeating the Metropolis procedure often enough to obtain a statistically inde-
pendent configuration. There are two simple tricks to speed up the generation of a statistically
independent configuration. First, visit each variable xi sequentially, rather than generating new
values for all N variables in {xi} and applying the test to the new configuration:

for(i=0; i<N; i++) {
x[i] = metropolis(x[i], r, S);

}

Second, while at any given site, repeat the procedure Hits times:

for(i=0; i<N; i++) {
for(j=0; j<Hits; j++) x[i] = metropolis(x[i], r, S);

}

(For lattice gauge theory it is more efficient to move the loop over hits into the Metropolis
routine, in such a way that most of the computation of S is re-used for each hit.)

Exercise I.3: Write a Metropolis updating program for the one-dimensional harmonic oscillator

V (x) = 1
2mω

2x2 (21)

S = ma
N−1∑
i=0

1
2 [xi+1 − xi)/a]2 + 1

2 (ωa)2(xi/a)2 (22)

The program will be easiest in lattice units, with dimensionless parameters ma and ωa, and dimensionless
variables xi/a.

Plot S and xavg =
∑N−1

t=0 xt/N vs. the configuration label c to check that the program is behaving
sensibly. Results are in Fig. 2, using ma = 1, ωa = 1; starting from xt/a = 5∀t; and updating with r = 3
and Hits = 1. The fraction of updates accepted was 54%.

Study how these plots change when r is varied.

No matter how r is chosen, a configuration is still has too much in common with its prede-
cessor. Furthermore, the first several configurations have too strong a memory of the (arbitrary)

6

Figure 2: S and xavg vs. c
7

Figure 3: S and xavg vs. c

initial configuration. These related features can be worked around by discarding the first Ntherm
configurations (called thermalization), and then saving only every Ndecorr-th configuration for
the ensemble average (called decorrelation). From Fig. 2 it seems that Ndecorr = 20 and
Ntherm = 200 should be sufficient.

Exercise I.4: Run with the same parameters as before, except use the recommended thermalization and
decorrelation. Compute the correlation functions C1(t) = 〈xtx0〉 and C2(t) = 〈x2

tx
2
0〉c, and extract the

first two energy levels. Note that the 〈xtx0〉 is automatically connected, because of parity V (−x) = V (x)).
Hence 〈x〉 = 0. Furthermore, parity also guarantees that 〈1|x̂2|0〉 = 0; consequently C2(t) gives the energy
of the second excited state. Verify that the energy levels are as expected, E1 = ωa, E2 = 2ωa. Results
for the t dependence are in Fig. 3.

8

